UNIVERSIDAD TÉCNOLOGICA DE PEREIRA FACULTAD DE TECNOLOGÍA INGENERÍA DE MANUFACTURA

II (OII (IIIII II							
Nombre y código de la asignatura			Matemática Fundamental – CB1B3				
Área académica			Ciencias Básicas				
Semestre	Créditos	Requisitos	Horas presenciales (HP)			Horas de trabajo	Total de horas
			Teóricas	Prácticas	HP Totales	independiente	
1	3	Ninguno	3	1	4	5	9

Año de actualización de la asignatura: 2020

1. Breve descripción

El estudiante que aprueba este curso estará en capacidad de usar conceptos, técnicas y resultados matemáticos en la comprensión, interpretación, análisis y solución de problemas en contextos cotidianos que fortalezcan el desarrollo del pensamiento matemático.

2. Objetivo general

Se busca llevar al estudiante a ser capaz de utilizar conceptos básicos, desarrollar algoritmos y resultados matemáticos básicos que son fundamentales para conceptos y técnicas más complejos, esto con miras a la aplicación de dichos conocimientos en la comprensión, interpretación, análisis y solución de problemas propios de la Ingeniería Mecánica.

Correspondencia con los objetivos del programa:

Se busca que, a través del desarrollo de las temáticas del curso, el estudiante de Ingeniería Mecánica, se prepare con los fundamentos matemáticos necesarios que le permitan ser un profesional con una formación en conceptos matemáticos relacionados con los métodos y aspectos teóricos disciplinares propios de este campo del saber.

3. Resultados de aprendizaje de asignatura

Competencias específicas:

Usar e interpretar la notación matemática.

Aplicar correctamente los algoritmos de las matemáticas básicas.

Manipular correctamente los conceptos de las matemáticas básicas.

Modelar situaciones cotidianas y de su campo disciplinar, usando conceptos

matemáticos. Resolver problemas cotidianos y de su campo disciplinar en términos

matemáticos. Otras competencias por formar:

Identificar, plantear y solucionar problemas en el campo de la Ingeniería Mecánica y relacionarlos con la simbología matemática a través de procesos de modelación matemática.

^{*} Aprobar o cursar con nota mayor a 2.0

4. Contenido

Lógica Teoría de conjuntos Números reales Álgebra Funciones

5. Recursos y bibliografía

Se utiliza la plataforma Classroom, software Geogebra y Desmos para trabajo algebraico y geométrico. Así mismo, talleres con ejercicios y problemas de aplicación de los conceptos. Se cuenta con el libro de texto guía: Álgebra, trigonometría y geometría analítica. Dennis G. Zill & Jacqueline M. Dewar

Se sugiere la bibliografía:

- [1] Allendoerfer Carl B. y Oakley Cletus O. Matemáticas Universitarias (1990). 4ta edición. McGrawHill.
- [2] Larson Ron. Precalculo (2018). 8va, edición. Cengage Learning.
- [3] Larson Ron. Precalculus with CalcChat and CalcView (2018). 10a, edición. Cengage Learning.
- [4] Stewart James, Redlin Lothar y Watson Saleem. Precálculo, matemáticas para el cálculo. (2007). 5ta edición Cengage Learning.
- [5] Swokowski Earl W. y Cole Jeffery A. Precálculo. Álgebra y Trigonometría con Geometría Analítica. (2018). 1ra edición. Cengage Learning.
- [6] Zill Dennis G. y Dewar Jacqueline. Precálculo con avances de Cálculo. (2012). 4ta edición. McGrawHill.

6. Metodología

Se motiva al estudiante a participar en la construcción de su conocimiento, para lo cual se le motiva a preparar con anterioridad los temas a trabajar en la clase. Se usan películas y videos alusivos a los temas para motivar el interés por las temáticas a trabajar. Se les envían talleres con anterioridad a la clase para que los trabajen durante la clase en grupos de trabajo. Se usa la Teoría de la Metáfora Conceptual para abordar los temas desde los significados metafóricos de las temáticas (origen griego o latino de los términos significantes con los cuales se nombran los conceptos). Esto permite al profesor el uso de metáforas que le ayudan tanto al profesor como al estudiante a "caminar" por la Zona de Desarrollo Próximo propuesta por L. Vygotsky en la apropiación de los conceptos que aplicará para la resolución de problemas.

El estudiante debe leer con anterioridad, traer preguntas acerca del tema o temas que se van a desarrollar en la clase, haber resuelto los ejercicios correspondientes o las dudas y sugerencias que hayan surgido al momento de desarrollarlos o intentar solucionarlos.

Se promueve la participación de los estudiantes para la resolución de los problemas que plantea el profesor con los talleres. Esta participación es valorada con un porcentaje del 20% en la nota de cada parcial.

7. Evaluación

Para la obtención de la nota se realizan diferentes pruebas escritas individuales durante el semestre, y se evalúa continuamente la participación en las actividades de clase. El tema evaluado en cada nota parcial con sus porcentajes es como sigue:

Nota parcial 1: Tema: Lógica y Teoría de Conjuntos (30%).

Nota parcial 2: Tema: Números Reales (20%).

Nota parcial 1: Tema: Álgebra (20%). Examen final: Tema: Funciones (30%).

Cada nota parcial se distribuye en un 80% para un examen escrito y 20% participación activa en

clase. Para el examen final el valor es del 100%.